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Motivation

The purpose of this talk is to explain the precise relationship between
algebras and free algebras.

While this is a simple question, it leads us
down a path lined with insights into the nature of categorical algebra.
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Presentations of algebras

Every algebra is a quotient of free algebras. Explicitly, for a monad
T = (t, µ, η) on a category A, and T -algebra (a, α), the following
diagram exhibits a coequaliser in the category of T -algebras.

tta ta aαtα

µa

Conceptually, this observation captures the intuition that we may
present an algebra by describing its generating operators, together
with equations that identify some of the resulting generated terms.
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The comparison functor

Given a monad T , we may form the category Alg(T ) of all T -algebras,
and the category Kl(T ) of free T -algebras. The category of free
T -algebras embeds into the category of all T -algebras, exhibiting a
fully faithful comparison functor iT : Kl(T ) ↪→ Alg(T ).

Kl(T ) Alg(T )

A A
t

kT

iT

uT

How does this observation relate to presentations of algebras?
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The pullback theorem for monads

Let T be a monad on a category A. The following diagram forms a
pullback of categories [Lin69].

Alg(T ) [Kl(T )op,Set]

A [Aop,Set]

uT [kT
op,Set]

よA

⌟

When A is small, [Kl(T )op,Set] is the free cocompletion of Kl(T ),
and so the pullback theorem states that the category of T -algebras
is a certain cocompletion of the category of free T -algebras. This
generalises the earlier observation about quotients of free algebras
from individual algebras to the entire category of algebras.

Furthermore, the unlabelled functor is isomorphic to the nerve niT :=
Alg(T )(iT−2,−1) of the comparison functor.
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Objective

The goal of this talk is to explain:
1. how the pullback theorem for monads generalises to a pullback

theorem for relative monads;

2. the conceptual explanation for the result;
3. some applications of the pullback theorem for relative monads.
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Overview

1. Distributors and double categories

2. Monads and loose-monads

3. Relative monads

4. Categories of free algebras

5. The pullback theorem

6. Consequences
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Distributors and double categories
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On the nature of category theory

What are the fundamental building blocks of category theory? In
other words, what do we need to do category theory?

Certainly
we need at least the following (e.g. to define adjunctions, monads,
colimits, etc.).

• Categories.
• Functors.
• Natural transformations.

However, there are many fundamental concepts in category theory
that cannot be defined with just these concepts (e.g. weighted colimits,
pointwise extensions, density, full faithfulness, etc.). To capture these
concepts, we need one more building block.

• Distributors.
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Distributors

Definition 1 (Bénabou)

Let A and B be categories. A distributor (a.k.a. profunctor or
(bi)module) A −7−→ B is a functor Bop ×A → Set.

A distributor p : A −7−→ B may be thought of as a categorified notion
of relation, i.e. a function B × A → {⊥,⊤}. A helpful intuition is
to think of the elements of p(b, a), for each b ∈ |B| and a ∈ |A|, as
heteromorphisms from b to a. Functoriality of p then ensures that
heteromorphisms in p are closed under precomposition by morphisms
in B and under postcomposition by morphisms in A.

(In more general settings, such as enriched category theory, distributors
may not be defined in terms of functors, which is why we view them
as a fundamentally separate concept. This is particularly crucial for
formal category theory.)
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Yoneda embedding as a distributor

As suggested by the definition of a distributor, to every category A
there is a canonical endo-distributor on A, given by the homomorph-
isms of A.

Example 2

Let A be a (locally small) category. The hom-sets of A form an
identity distributor A(1, 1) : A −7−→ A, defined by

A(1, 1)(a, a′) := A(a, a′)

(Note that the hom-set functor Aop×A → Set is the uncurried form
of the Yoneda embedding A → SetA

op
.)
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Representable and corepresentables

Every functor f : A → B induces two distributors.

Example 3

A representable distributor B(1, f) : A −7−→ B, defined by

B(1, f)(b, a) := B(b, fa)

Example 4

A corepresentable distributor B(f, 1) : B −7−→ A, defined by

B(f, 1)(a, b) := B(fa, b)
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Restriction

The representable and corepresentable distributors associated to a
functor are special cases of the following construction.

Example 5

Given every diagram of the following form,

A D

C Bpp

gf

p(f,g)

there is a distributor p(f, g) : A −7−→ D, defined by

p(f, g)(d, a) := p(fd, ga)
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Universal properties via distributors

Why should we care about distributors?

Crucially, they allow us to reason about categorical notions involving
the homs of categories entirely formally (i.e. diagrammatically).

Proposition 6

Let ℓ : A → B and r : B → A be functors. Then ℓ ⊣ r if and
only if there is an isomorphism of distributors:

B(ℓ, 1) ∼= A(1, r) : B −7−→ A

As a consequence, we are able to define (weighted) limits and colim-
its, pointwise extensions, density, full faithfulness, etc. in terms of
distributors.
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Distributors versus presheaf categories

For ordinary categories, we can alternatively define these concepts in
terms of presheaf categories. That is, for locally small categories A
and B, a distributor A −7−→ B is equivalently a functor A → [Bop,Set]
by currying. However, this is not possible in general for other flavours
of category theory, such as enriched category theory, where presheaf
categories may not exist.

Furthermore, using distributors allows us not to worry about size
issues (e.g. taking presheaf categories of large categories).

We shall see more advantages to reasoning using distributors, in
connection to the theory of monads, later in the talk.
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The structure that distributors form

There are many examples of “category-like structures” that are of
interest in category theory. Some examples are enriched categories,
internal categories, fibred categories, indexed categories, monoidal
categories, and so on.

Axiomatising the structure of categories, functors, and natural
transformations led early category theorists to the concept of
2-category [God58; Bén65; Mar65]. Enriched categories, internal
categories, fibred categories, and so on, all form 2-categories.

However, as we have mentioned, to carry out a significant amount of
category theory, we also need to consider distributors. What structure,
then, do categories, functors, distributors, and natural transformations
form?
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Virtual double categories

A virtual double category [Bur71] has a collection of objects, a
collection of tight-cells • → • between objects, a collection of loose-
cells • −7−→ • between objects, and a collection of 2-cells of the following
shape.

A0 A1 · · · An−1 An

B0 Bnqp

pnpp1p pn−1pp2p
gf ϕ

Tight-cells may be composed associatively and unitally, as may 2-cells.
Loose-cells may not be composed in general.

While the definition of a virtual double category may at first appear
intimidating, in practice it quickly becomes intuitive to reason about
them, for instance by using a string diagram calculus.
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Natural transformations

A natural transformation of the form

A0 A1 · · · An−1 An

B0 Bnqp

pnpp1p pn−1pp2p
gf ϕ

comprises a family of functions

ϕx0,...,xn : p1(x0, x1)× · · · × pn(xn−1, xn) → q(fx0, gxn)

for x0 ∈ |A0|, . . . , xn ∈ |An|, satisfying certain naturality laws.

In other words, a natural transformation essentially tells us how to
compose a chain of heteromorphisms.

When n = 0 and q is trivial, this is exactly the usual notion of natural
transformation ϕ : f ⇒ g between functors.
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The virtual double category of categories

The motivating example of a virtual double category is Cat, the
virtual double category whose objects are locally small categories,
whose tight-cells are functors, whose loose-cells are distributors, and
whose 2-cells are natural transformations.

(Note that Cat is not a pseudo double category, unless we restrict to
small categories, which is overly restrictive for many purposes.)

Other examples of virtual double categories include the virtual double
categories V-Cat, of categories enriched in a monoidal category V;
Cat(E), of categories internal to a finitely complete category E;
as well as virtual double categories of fibred categories, indexed
categories, monoidal categories, and so on.

In fact, these virtual double categories are particularly well-behaved,
having identity loose-cells, and restrictions of loose-cells along tight-
cells. Such virtual double categories are known as virtual equipments.
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Monads and loose-monads
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Monads in a virtual double category

Since a virtual double category has two kinds of morphisms (tight
and loose), there are two kinds of monads we can consider inside a
virtual double category.

A (tight) monad comprises a tight-cell t : A → A, and 2-cells
µ : tt → t and η : 1A ⇒ t satisfying associativity and unitality ax-
ioms.

A A A A

A A A A

tt

p

t t

p

ηµ

A loose-monad comprises a loose-cell t : A −7−→ A, and 2-cells µ : t, t →
t and η : ⇒ t satisfying associativity and unitality axioms.

A A A A A

A A A A

tp tp

t
p

t
p

µ η
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Monads and loose-monads in Cat

A monad in Cat is simply an ordinary monad, i.e. a functor t : A → A
equipped with natural transformations µ : tt ⇒ t and η : 1A ⇒ t
satisfying associativity and unitality axioms.

A loose-monad (a.k.a. promonad) in Cat comprises
1. a distributor p : A −7−→ A;
2. for each f : x → y in A, an element ηf ∈ p(x, y);
3. for f ∈ p(x, y) and g ∈ p(y, z), an element (f ; g) ∈ p(x, z);

satisfying associativity and unitality axioms. A loose-monad, therefore,
looks very much like a category.

Indeed, every category A induces a canonical loose-monad A(1, 1),
whose underlying distributor is given by the hom-sets of A, whose
unit is trivial, and whose multiplication is given by composition in A.
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The collapse of a loose-monad

In fact, every loose-monad p induces a category «p», the collapse of
p, defined by

|«p»| := |A| «p»(x, y) := p(x, y)

The collapse is equipped with an identity-on-objects functor π

p : A →
«p», which sends f : x → y in A to ηf : x → y in «p».
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Relative monads
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Monoids in multicategories

A multicategory [Lam69] is a generalisation of a category in which
we permit morphisms with multiary domain (analogous to the 2-cells
in a virtual double category).

We can define monoids internal to any multicategory, generalising
the notion of monoid internal to a monoidal category.

Definition 7
Let M be a multicategory. A monoid in M comprises

1. an object M ;
2. a multimorphism µ : M,M → M ;
3. a multimorphism η : → M ,

satisfying associativity and unitality axioms.
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Monoid sections I

Definition 8
Let M be a multicategory and let (M,µM , ηM ) be a monoid
in M. An (M,µM , ηM )-section comprises a section–retraction
pair s : R ⇄ M :r rendering the following diagram commutative.

R,R

M,M M,M

M R M

s,s

µM

s,s

µM

r s

ηM ηM
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Monoid sections II

Conceptually, a monoid section is a retract R of the carrier of a
monoid M , for which the section morphism s : R → M satisfies the
laws to be a monoid morphism, with respect to “tentative monoid
structure” on R.

It turns out that this suffices for R to itself be a monoid, whose
multiplication and unit are inherited from M .

Proposition 9

Let M be a multicategory and let (M,µM , ηM ) be a monoid in
M. An (M,µM , ηM )-section (R, s, r) endows R with a unique
monoid structure such that s is a monoid morphism.

Why is this interesting? It turns out that we can characterise relative
monads in this way.
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Relative monads as monoid sections

Definition 10
A relative monad comprises a functor t : A → E along with a
t-corepresentable E(t, t)-section.

Unwrapping this definition, we obtain the classical definition of a
relative monad [ACU10], i.e. that a relative monad comprises

1. a functor j : A → E, the root;
2. a functor t : A → E, the carrier;
3. a natural transformation η : j ⇒ t, the unit;
4. a natural transformation † : E(j, t) ⇒ E(t, t), the extension

operator,
satisfying unitality and associativity axioms.

When j = 1, this is equivalent to the usual definition of a monad.
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Examples of relative monads

Relative monads are abundant in category theory.
• Monads.

• Partial monads.
• Graded monads [MU22].
• Cocontinuous monads on cocompletions (e.g. finitary monads

on locally finitely presentable categories).
• Monads arising from monad–theory correspondences [Ark22].
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The loose-monad associated to a relative monad

Why define relative monads as monoid sections, rather than via the
expanded definition?

One reason is that we immediately obtain the following observation.

Corollary 11

Let T be a j-relative monad. The distributor E(j, t) : A −7−→ A
is equipped with the structure of a loose-monad E(j, T ), and
† : E(j, t) ⇒ E(t, t) is a loose-monad morphism.

Why is this nice? As we will see in the remainder of the talk, a
relative monad T and its associated loose-monad E(j, T ) are strongly
connected. The presentation of relative monads in terms of monoid
sections emphasises this connection: in some sense, we can view
E(j, T ) as encapsulating the fundamental structure of T .
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(Free) algebras via loose-monads

If we can capture the structure of relative monads via their associated
loose-monads, it is natural to ask whether we might also capture
the algebras and free algebras for a relative monad T in terms of its
associated loose-monad E(j, T ).

As we shall see, this question leads inevitably to the pullback theorem.
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Categories of free algebras
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Kleisli categories for relative monads

Just as for non-relative monads, there are two important categories
associated to every relative monad.

Definition 12 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad.
The Kleisli category of T is the category Kl(T ) defined by

|Kl(T )| := |A|
Kl(T )(x, y) := E(jx, ty)

with identities and composition given as in the Kleisli category
for a monad.

This is equipped with an inclusion functor kT : A → Kl(T ).

This definition may look reminiscent of an earlier one...
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Kleisli categories via collapse

Theorem 13
Let T be a j-relative monad. The Kleisli category of T is precisely
the collapse of the loose-monad E(j, T ).

Why is this interesting?

• It allows us to capture what seems like an entirely concrete
definition using canonical constructions associated to
distributors.

• The universal property of a collapse is stronger than that
typically associated with a Kleisli category (namely an opalgebra
object). This allows us to prove stronger theorems than we
would otherwise be able to prove.

• It justifies our perspective that E(j, T ) represents T in a
suitable sense, since we can recover T from Kl(T ) via its
associated relative adjunction.
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The pullback theorem
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Categories of algebras

Definition 14 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad. A T -
algebra is an object e ∈ E equipped with a natural transformation
⋊ : E(j, e) ⇒ E(t, e) that is compatible with the unit and
extension operator of T .

The category of algebras of T is the category Alg(T ) whose
objects are T -algebras and whose morphisms are morphisms in
E preserving the algebra structure.

This is equipped with a forgetful functor uT : Alg(T ) → E.

When j = 1, this is equivalent to the usual definition of the category
of algebras for a monad.

75



Categories of algebras

Definition 14 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad. A T -
algebra is an object e ∈ E equipped with a natural transformation
⋊ : E(j, e) ⇒ E(t, e) that is compatible with the unit and
extension operator of T .

The category of algebras of T is the category Alg(T ) whose
objects are T -algebras and whose morphisms are morphisms in
E preserving the algebra structure.

This is equipped with a forgetful functor uT : Alg(T ) → E.

When j = 1, this is equivalent to the usual definition of the category
of algebras for a monad.

76



Categories of algebras

Definition 14 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad. A T -
algebra is an object e ∈ E equipped with a natural transformation
⋊ : E(j, e) ⇒ E(t, e) that is compatible with the unit and
extension operator of T .

The category of algebras of T is the category Alg(T ) whose
objects are T -algebras and whose morphisms are morphisms in
E preserving the algebra structure.

This is equipped with a forgetful functor uT : Alg(T ) → E.

When j = 1, this is equivalent to the usual definition of the category
of algebras for a monad.

77



Relative adjunctions

The concept of relative adjunction is a generalisation of the concept
of adjunction, where the domain of the left adjoint is permitted to
be different to the codomain of the right adjoint.

Definition 15 ([Ulm68])

A relative adjunction comprises
1. a functor j : A → E, the root;
2. a functor ℓ : A → C, the left relative adjoint;
3. a functor r : C → E, the right relative adjoint;
4. an isomorphism of the form C(ℓ, 1) ∼= E(j, r).

C

A E

ℓ r

j

⊣

78



Examples of relative adjunctions

Relative adjunctions are abundant in category theory.
• Adjunctions.

• Partial adjunctions.
• Multi-adjunctions.
• Weighted colimits.
• Nerves.
• Algebraic theories and their various generalisations [Die74;

Ark22].
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Kleisli and Eilenberg–Moore relative adjunctions

Just as for non-relative monads, the Kleisli category and category of
algebras associated to a relative monad T form relative adjunctions,
which induce the relative monad T by composing the left relative
adjoint with the right relative adjoint.

Kl(T )

A E
j

kT vT

⊣

Alg(T )

A E
j

fT uT

⊣

Furthermore, these relative adjunctions satisfy universal properties
amongst resolutions of T – i.e. relative adjunctions inducing T –
which induce a canonical comparison functor iT : Kl(T ) → Alg(T ).

As we shall see, this comparison functor exhibits a stronger universal
property than is implied simply by the universal properties of Kl(T )
or Alg(T ) individually.
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Semanticisers

Definition 16
A semanticiser of a distributor n : E −7−→ A and a functor k : A →
K comprises a span of a distributor and functor, as on the left,
such that the diagram on the right commutes,

• K

E Anp

ku

ip • K

E Anp

K(k,1)pE(1,u)p

ip

i.e. such that i(k, 1) = n(1, u), that is universal in the evident
sense.

A semanticiser is a kind of equipment-theoretic limit.
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The semanticiser theorem

Theorem 17
Let j : A → E be a dense functor and let T be a j-relative monad.
Up to isomorphism, the following diagram is a semanticiser.

Alg(T ) Kl(T )

E A
E(j,1)
p

kTuT

Alg(T )(iT ,1)
p

This is striking, because it identifies a nontrivial universal property, me-
diated by the comparison functor, that connects Kl(T ) and Alg(T ).
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Presheaf categories

Definition 18
Let A be a small category. The category of presheaves on A is
the functor category Â := [Aop,Set]. Denote byよA : A → Â
the Yoneda embedding, defined by

よA(a) := A(−, a)

We can reformulate the Yoneda lemma in terms of a universal property
involving distributors.

Lemma 19
The Yoneda embedding Â(よA, 1) induces a bijection between
functors B → Â and distributors B −7−→ A.

91



Presheaf categories

Definition 18
Let A be a small category. The category of presheaves on A is
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Nerves

Definition 20
For any functor f : A → B from a small category, there is a
functor nf : B → Â, the nerve of f , defined by

nf (b) := B(f−, b)

The nerve is the functor corresponding, via the bijection on the
previous slide, to the corepresentable distributor B(f, 1) : B −7−→ A.

The nerve of f is right relative adjoint to f .

B

A Â
よA

f nf

⊣
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The pullback theorem I

In the presence of categories of presheaves, we may reformulate the
universal property of a semanticiser into one involving only functors
(rather than distributors). This allows us to easily give a concrete
description.

Theorem 21
In Cat, the semanticiser of E(j, 1) : E −7−→ A and A

k−→ K, where
A and K are small, is given by the following pullback.

• K̂

E Ânj

k̂u

i

⌟
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The pullback theorem II

Corollary 22

Let j : A → E be a dense functor and let T be a j-relative
monad. The following diagram is a pullback in Cat.

Alg(T ) K̂l(T )

E Â

k̂T

nj

uT

⌟

Consequently, the comparison functor iT : Kl(T ) ↪→ Alg(T ) is
dense.

The algebras for a relative monad may thus be seen as a free cocom-
pletion of the free algebras.
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Non-relative case

When j = 1, we recover the pullback theorem for non-relative monads.

Theorem 23 (Linton)

Let T be a monad on a category A. The following diagram is a
pullback in Cat.

Alg(T ) K̂l(T )

A Â

k̂T

よA

uT

⌟
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Consequences
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Algebraic theories and relative monads

One of our motivations for studying relative monads is their connection
to algebraic theories and their generalisations.

Definition 24 (Lawvere)

Denote by F the free category with strict finite coproducts on a
single object. A finitary algebraic theory is an identity-on-objects
functor from F that preserves finite coproducts.

Theorem 25
There is an isomorphism between the category of finitary algeb-
raic theories and the category of (F → Set)-relative monads.

More specifically, every algebraic theory is the Kleisli inclusion of a
relative monad [Ark22].
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Models and algebras

The pullback theorem establishes that the correspondence between
algebraic theories and relative monads commutes with the process of
taking models and algebras respectively.

Corollary 26

Let ℓ : F → L be a finitary algebraic theory. The category of
algebras for the induced relative monad is given by the following
pullback in Cat.

Alg(Tℓ) Cart(Lop,Set) L̂

Set Cart(Fop,Set) F̂

ℓ̂Cart(ℓop,Set)

≃

uTℓ

≃
⌟
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Cocontinuous monads and relative monads

Another motivation for studying relative monads is their connection
to cocontinuous monads.

Theorem 27
Let Φ be a class of colimits. There is an equivalence between the
category of Φ-cocontinuous monads on Φ(A) and the category
of (A → Φ(A))-relative monads, and this commutes with the
process of taking algebras.

Corollary 28

Let A be a small, finitely cocomplete category. There is an
equivalence between the category of finitary monads on Ind(A)
and the category of (A → Ind(A))-relative monads, and this
commutes with the process of taking algebras.
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Locally presentable categories of algebras

Corollary 29

Let T be a finitary monad on a locally finitely presentable cat-
egory. Then its category of algebras is also locally finitely present-
able.

Proof sketch. We have the following pullback in Cat.

Alg(T ) K̂l(T )

Ind(A) Â

k̂TuT

⌟

The functors Ind(A) → Â and K̂l(T ) → Â are both finitary right
adjoints between locally finitely presentable categories. Thus, so are
the two projection functors [Bir84].
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Summary

• The pullback theorem for monads describes precisely in what
sense the category of algebras is a cocompletion of the category
of free algebras.

• The pullback theorem for monads generalises to a pullback
theorem for relative monads with dense roots.

• This has fruitful connections to the theory of algebraic theories
and cocontinuous monads.

A paper on this topic is forthcoming. In the meantime, if you found
this talk interesting, you may also be interested in:

1. Monadic and Higher-Order Structure [Ark22]
2. The formal theory of relative monads [AM23a]
3. Relative monadicity [AM23b]
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